Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38627964

RESUMO

OBJECTIVE: Crimean-Congo haemorrhagic fever (CCHF) is a severe zoonotic arboviral disease that occurs widely in Eastern and Western Europe, Asia and Africa. The disease is becoming of growing public health importance in Senegal. However, analysis of tick infestation, CCHF virus (CCHFV) circulation extent and risk factors during ongoing outbreak are scarce. A thorough outbreak investigation was carried out during a CCHF outbreak in Podor (Northern Senegal) in August 2022. METHODS: Ticks and blood samples were collected from animals (cattle, goats and sheep) randomly selected from confirmed CCHF human cases houses, neighbourhoods and surrounding villages. Blood samples were tested for CCHFV antibodies using a commercial enzyme-linked immunosorbent assay (ELISA) test. Tick samples were screened for CCHFV RNA by RT-PCR. RESULTS: Overall, tick infestation rate (TIR) and CCHFV seroprevalence of livestock were 52.12% (95% confidence interval (CI): 45.54%-58.64%) and 43.28% (95% CI: 36.33%-50.44%), respectively. The TIRs were 87.7% in cattle, 57.6% in sheep and 20.0% in goats. These rates were significantly associated with location, host species and tick control (p < 0.001) but not with animal age and sex (p > 0.7). CCHFV seroprevalence was 80.4% (95% CI: 67.57%-89.77%) in cattle, 35.4% (95% CI: 25.00%-47.01%) in sheep and 21.2% (95% CI: 12.11%-33.02%) in goats. Age, sex, location, animal host and presence of ticks were significantly associated to the presence of antibodies. The 950 ticks collected included among other species, Hyalomma impeltatum (48.84%) and H. rufipes (10.21%). Five pools of Hyalomma ssp. were found CCHFV RT-PCR positive. These infected ticks included 0.86% (4/464) of H. impeltatum collected on cattle and sheep and 1.03% (1/97) of H. rufipes collected on a sheep. CONCLUSIONS: To our knowledge, this is the first report on the extend of tick infestation and CCHFV infection in livestock during an outbreak in Senegal. The results highlight the risk of human infections and the importance of strengthening vector, animal and human surveillance as well as tick control measures in this area to prevent CCHF infections in humans.

2.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526209

RESUMO

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Senegal/epidemiologia , Sorogrupo , Meio Ambiente , Dengue/epidemiologia
3.
Trop Med Infect Dis ; 9(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393121

RESUMO

Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.

4.
Viruses ; 16(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400037

RESUMO

Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of diseases in humans and is mainly found in African countries. This study aimed to genetically identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain was reactivated and subjected to whole genome sequencing using an Illumina-based approach. Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830 from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed the Senegal strain's clustering with BATV. This study corrects the misclassification, confirming the presence of BATV in West Africa. This research represents the first evidence of BATV circulation in West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective sequencing is crucial for reevaluating strains and identifying potential public health threats among neglected viruses.


Assuntos
Vírus Bunyamwera , Culicidae , Orthobunyavirus , Animais , Humanos , Vírus Bunyamwera/genética , Senegal , Filogenia , Estudos Retrospectivos , Orthobunyavirus/genética , Genômica , Ruminantes
5.
Viruses ; 16(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400090

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), the most widespread tick-borne viral human infection, poses a threat to global health. In this study, clinical samples collected through national surveillance systems were screened for acute CCHF virus (CCHFV) infection using RT-PCR and for exposure using ELISA. For any CCHF-positive sample, livestock and tick samples were also collected in the neighborhood of the confirmed case and tested using ELISA and RT-PCR, respectively. Genome sequencing and phylogenetic analyses were also performed on samples with positive RT-PCR results. In Eastern Senegal, two human cases and one Hyalomma tick positive for CCHF were identified and a seroprevalence in livestock ranging from 9.33% to 45.26% was detected. Phylogenetic analyses revealed that the human strain belonged to genotype I based on the available L segment. However, the tick strain showed a reassortant profile, with the L and M segments belonging to genotype I and the S segment belonging to genotype III. Our data also showed that our strains clustered with strains isolated in different countries, including Mauritania. Therefore, our findings confirmed the high genetic variability inside the CCHF genotypes and their introduction to Senegal from other countries. They also indicate an increasing CCHF threat in Senegal and emphasize the need to reinforce surveillance using a one-health approach.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Filogenia , Estudos Soroepidemiológicos , Senegal/epidemiologia , Gado
6.
J Med Entomol ; 61(1): 222-232, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703355

RESUMO

Senegal has experienced periodic epidemics of dengue in urban areas with increased incidence in recent years. However, few data are available on the local ecology of the epidemic vectors. In October 2021, a dengue outbreak was reported in northern Senegal to the Institute Pasteur de Dakar. Entomologic investigations then were undertaken to identify the areas at risk of transmission and to identify the vector(s). Adult mosquitoes were collected indoors and outdoors at selected households, while containers with water were inspected for mosquito larvae. All the Aedes aegypti (L.) collected were tested for dengue virus NS1 protein using a rapid diagnostic test (RDT), and positive samples were confirmed by real-time RT-PCR. The qRT-PCR positive samples were subjected to whole genome sequencing using Nanopore technology. The majority of the larvae-positive containers (83.1%) were used for water storage. The Breteau and Container indices exceeded the WHO-recommended thresholds for the risk of dengue virus transmission except at 2 localities. Ae. aegypti, the only reputed dengue vector, was collected resting indoors as well as outdoors and biting during the day and night. The NS1 protein was detected in 22 mosquito pools, including one pool of females emerging from field-collected larvae. All NS1-positive results were confirmed by RT-PCR. Virus serotyping showed that the outbreak was caused by DENV-1. This study demonstrates the need for continuous control of adult and aquatic stages of Ae. aegypti to prevent future dengue epidemics in Senegal. RDTs appear to be a promising tool for dengue diagnostics and surveillance.


Assuntos
Aedes , Vírus da Dengue , Dengue , Feminino , Animais , Dengue/epidemiologia , Vírus da Dengue/genética , Mosquitos Vetores , Senegal/epidemiologia , Surtos de Doenças , Larva , Água
7.
medRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106224

RESUMO

The Chikungunya virus, a global arbovirus, is currently causing a major outbreak in the Western African region, with the highest cases reported in Senegal and Burkina Faso. Recent molecular evolution analyses reveal that the strain responsible for the epidemic belongs to the West African genotype, with new mutations potentially impacting viral replication, antigenicity, and host adaptation. Real-time genomic monitoring is needed to track the virus's spread in new regions. A scalable West African genotype amplicon-based Whole Genome Sequencing for multiple Next Generation Sequencing platforms has been developed to support genomic investigations and identify epidemiological links during the virus's ongoing spread. This technology will help identify potential threats and support real-time genomic investigations in the ongoing spread of the virus.

8.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131795

RESUMO

Arthropod-borne diseases currently constitute a source of major health concerns worldwide. They account for about 50% of global infectious diseases and cause nearly 700,000 deaths every year. Their rapid increase and spread constitute a huge challenge for public health, highlighting the need for early detection during epidemics, to curtail the virus spread, and to enhance outbreak management. Here, we compared a standard quantitative polymerase chain reaction (RT-qPCR) and a direct RT-qPCR assay for the detection of Zika (ZIKV), Chikungunya (CHIKV), and Rift Valley Fever (RVFV) viruses from experimentally infected-mosquitoes. The direct RT-qPCR could be completed within 1.5 h and required 1 µL of viral supernatant from homogenized mosquito body pools. Results showed that the direct RT-qPCR can detect 85.71%, 89%, and 100% of CHIKV, RVFV, and ZIKV samples by direct amplifications compared to the standard method. The use of 1:10 diluted supernatant is suggested for CHIKV and RVFV direct RT-qPCR. Despite a slight drop in sensitivity for direct PCR, our technique is more affordable, less time-consuming, and provides a better option for qualitative field diagnosis during outbreak management. It represents an alternative when extraction and purification steps are not possible because of insufficient sample volume or biosecurity issues.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Culicidae , Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/diagnóstico , Zika virus/genética , Vírus Chikungunya/genética , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia
9.
Nat Commun ; 14(1): 6440, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833275

RESUMO

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/genética , Filogenia , Europa (Continente)/epidemiologia , África do Sul , Aves
10.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896941

RESUMO

Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.

11.
Sci Rep ; 13(1): 9121, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277417

RESUMO

During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Busca de Comunicante , Pandemias , Senegal/epidemiologia
12.
Trop Med Infect Dis ; 8(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368735

RESUMO

Crimean-Congo haemorrhagic fever virus (CCHFV) occurs sporadically in Senegal, with a few human cases each year. This active circulation of CCHFV motivated this study which investigated different localities of Senegal to determine the diversity of tick species, tick infestation rates in livestock and livestock infections with CCHFV. The samples were collected in July 2021 from cattle, sheep and goats in different locations in Senegal. Tick samples were identified and pooled by species and sex for CCHFV detection via RT-PCR. A total of 6135 ticks belonging to 11 species and 4 genera were collected. The genus Hyalomma was the most abundant (54%), followed by Amblyomma (36.54%), Rhipicephalus (8.67%) and Boophilus (0.75%). The prevalence of tick infestation was 92%, 55% and 13% in cattle, sheep and goats, respectively. Crimean-Congo haemorrhagic fever virus (CCHFV) was detected in 54/1956 of the tested pools. The infection rate was higher in ticks collected from sheep (0.42/1000 infected ticks) than those from cattle (0.13/1000), while all ticks collected from goats were negative. This study confirmed the active circulation of CCHFV in ticks in Senegal and highlights their role in the maintenance of CCHFV. It is imperative to take effective measures to control tick infestation in livestock to prevent future CCHFV infections in humans.

13.
Viruses ; 15(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376561

RESUMO

West Nile virus is a re-emerging arbovirus whose impact on public health is increasingly important as more and more epidemics and epizootics occur, particularly in America and Europe, with evidence of active circulation in Africa. Because birds constitute the main reservoirs, migratory movements allow the diffusion of various lineages in the world. It is therefore crucial to properly control the dispersion of these lineages, especially because some have a greater health impact on public health than others. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to West Nile virus. This study was carried out on different strains from lineage 1 and 2 from Senegal and Italy. The presented protocol/approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for West Nile genomic surveillance.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Europa (Continente)/epidemiologia , Itália , Senegal
14.
IJID Reg ; 7: 216-221, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153883

RESUMO

Objectives: Rift Valley Fever and Crimean-Congo Hemorrhagic Fever are two infections classified among the emerging diseases to be monitored with highest priority. Studies undertaken in human and animals have shown endemicity of these two arboviruses in several African countries. However, most of the investigations were carried out on domestic cattle and the studies conducted on human populations are either outdated or limited to a small number of well-known endemic areas. It is then critical to better evaluate the burden of these viruses in Senegal at a national scale. Methods: This work relies on a previous seroprevalence survey undertaken in all regions of Senegal at the end of 2020. The existing biobank was used to determine the immunoglobulin G [IgG] Rift Valley Fever and Crimean-Congo Hemorrhagic Fever seroprevalences by indirect enzyme-linked immunosorbent assay. Results: The crude seroprevalences of Rift Valley Fever and Crimean-Congo Hemorrhagic Fever were 3.94% and 0.7% respectively, with the northern and central part of the countries as the main exposed areas. However, acute infections reported in both high and low exposed regions suggest sporadic introductions. Conclusions: This study gives updated information and could be of interest to support the stakeholders in the management of these zoonoses.

15.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112887

RESUMO

In Senegal, the burden of dengue is increasing and expanding. As case management and traditional diagnostic techniques can be difficult to implement, rapid diagnostic tests (RDTs) deployed at point of care are ideal for investigating active outbreaks. The aim of this study was to evaluate the diagnostic performance of the Dengue NS1 and Dengue IgM/IgG RDTs on the serum/plasma samples in a laboratory setting and in the field. During laboratory evaluation, performance of the NS1 RDT was assessed using NS1 ELISA as the gold standard. Sensitivity and specificity were 88% [75-95%] and 100% [97-100%], respectively. Performance of the IgM/IG RDT was assessed using the IgM Antibody Capture (MAC) ELISA, indirect IgG, and PRNT as gold standards. The IgM and IgG test lines respectively displayed sensitivities of 94% [83-99%] and 70% [59-79%] and specificities of 91% [84-95%] and 91% [79-98%]. In the field, the Dengue NS1 RDT sensitivity and specificity was 82% [60-95%] and 75% [53-90%], respectively. The IgM and IgG test lines displayed sensitivities of 86% [42-100%] and 78% [64-88%], specificities of 85% [76-92%] and 55% [36-73%], respectively. These results demonstrate that RDTs are ideal for use in a context of high prevalence or outbreak setting and can be implemented in the absence of a confirmatory test for acute and convalescent patients.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/epidemiologia , Testes de Diagnóstico Rápido , Senegal/epidemiologia , Sensibilidade e Especificidade , Imunoglobulina M , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Anticorpos Antivirais , Proteínas não Estruturais Virais
16.
J Med Virol ; 95(4): e28700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951314

RESUMO

Yellow fever (YF) virus is a mosquito-borne virus belonging to the Flaviviridae family that circulates in tropical and subtropical areas of Africa and South America. Despite the availability of an effective vaccine, YF remains a threat to travelers, residents of endemic areas, and unvaccinated populations. YF vaccination and natural infection both induce the production of neutralizing antibodies. Serological diagnostic methods detecting YF virus-specific antibodies demonstrate high levels of cross-reactivities with other flaviviruses. To date, the plaque reduction neutralization test (PRNT) is the most specific serological test for the differentiation of flavivirus infections and is considered the reference method for detecting YF neutralizing antibodies and assessing the protective immune response following vaccination. In this study, we developed and validated a YF PRNT. We optimized different parameters including cell concentration and virus-serum neutralization time period and then assessed the intra- and inter-assay precisions, dilutability, specificity, and lower limit of quantification (LLOQ) using international standard YF serum, sera from vaccinees and human specimens collected through YF surveillance. The YF PRNT has shown good robustness and 100% of intra-assay precision, 95.6% of inter-assay precision, 100% of specificity, 100% of LLOQ, and 95.3% of dilutability. The test is, therefore, suitable for use in the YF diagnostic as well as evaluation of the YF vaccine neutralizing antibody response and risk assessment studies.


Assuntos
Vacinas , Vacina contra Febre Amarela , Febre Amarela , Humanos , Febre Amarela/diagnóstico , Febre Amarela/prevenção & controle , Testes de Neutralização , Vírus da Febre Amarela , Anticorpos Neutralizantes , Anticorpos Antivirais
17.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766567

RESUMO

Zika virus (ZIKV) diagnostics are crucial for proper antenatal and postnatal care and also for surveillance and serosurvey studies. Since the viremia during ZIKV infection is fleeting, serological testing is highly valuable to inform diagnosis. However, current serology tests using whole virus antigens frequently suffer from cross reactivity issues, delays, and technical complexity, especially in low and middle income countries (LMICs) and endemic countries. Here, we describe an indirect ELISA to detect specific IgG antibodies using the ZIKV envelope domain III (EDIII) protein expressed in Drosophila S2 cells as an immunogen. Using a total of 367 clinical samples, we showed that the EDIII-ELISA was able to detect IgG antibodies against ZIKV with high sensitivity of 100.0% and specificity of 94.7% when compared to plaque reduction neutralization tests (PRNTs) as the gold standard and using 0.208 as the cut-off OD value. These results show the usefulness of the recombinant envelope domain III as an alternative to standard whole virus proteins for ZIKV diagnostics as it improves the sensitivity and specificity of IgG ELISA assay when used as an immunogen. This method should, therefore, be extended to serological diagnostic techniques for other members of the flavivirus genus and for use in IgM diagnostic testing.

18.
Viruses ; 15(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36851764

RESUMO

Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea-Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations.


Assuntos
Vírus Bunyamwera , Vírus da Febre Hemorrágica da Crimeia-Congo , Orthobunyavirus , Animais , Orthobunyavirus/genética , Vírus Bunyamwera/genética , Sequenciamento Completo do Genoma , Recombinação Genética
19.
Trop Med Infect Dis ; 8(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36828503

RESUMO

The mosquito-borne disease caused by the Rift Valley Fever Virus (RVFV) is a viral hemorrhagic fever that affects humans and animals. In 1987, RVFV emerged in Mauritania, which caused the first RVFV outbreak in West Africa. This outbreak was shortly followed by reported cases in humans and livestock in Senegal. Animal trade practices with neighboring Mauritania suggest northern regions of Senegal are at high risk for RVF. In this study, we aim to conduct a molecular and serological survey of RVFV in humans and livestock in Agnam (northeastern Senegal) by RT-PCR (reverse transcription real-time polymerase chain reaction) and ELISA (Enzyme-Linked Immunosorbent Assay), respectively. Of the two hundred fifty-five human sera, one (0.39%) tested RVFV IgM positive, while fifty-three (20.78%) tested positive for RVFV IgG. For animal monitoring, out of 30 sheep recorded and sampled over the study period, 20 (66.67%) showed seroconversion to RVFV IgG antibodies, notably during the rainy season. The presence of antibodies increased significantly with age in both groups (p < 0.05), as the force of RVF infection (FOI), increased by 16.05% per year for humans and by 80.4% per month for livestock sheep. This study supports the usefulness of setting up a One Health survey for RVF management.

20.
Trop Med Infect Dis ; 8(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828546

RESUMO

Zika virus (ZIKV) shows an enigmatic epidemiological profile in Africa. Despite its frequent detection in mosquitoes, few human cases have been reported. This could be due to the low infectious potential or low virulence of African ZIKV lineages. This study sought to assess the susceptibility of A. aegypti and C. quinquefasciatus to ZIKV strains from Senegal, Brazil, and New Caledonia. Vertical transmission was also investigated. Whole bodies, legs/wings and saliva samples were tested for ZIKV by real-time PCR to estimate infection, dissemination and transmission rates as well as the infection rate in the progeny of infected female A. aegypti. For A. aegypti, the Senegalese strain showed at 15 days post-exposure (dpe) a significantly higher infection rate (52.43%) than the Brazilian (10%) and New Caledonian (0%) strains. The Brazilian and Senegalese strains were disseminated but not detected in saliva. No A. aegypti offspring from females infected with Senegalese and Brazilian ZIKV strains tested positive. No infection was recorded for C. quinquefasciatus. We observed the incompetence of Senegalese A. aegypti to transmit ZIKV and the C. quinquefasciatus were completely refractory. The effect of freezing ZIKV had no significant impact on the vector competence of Aedes aegypti from Senegal, and vertical transmission was not reported in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA